Real-time color imaging with a CMOS sensor having stacked photodiodes

David L. Gilblom, Alternative Vision Corporation Sang Keun Yoo, HanVision Co., Ltd. Peter Ventura, Foveon, Inc. August 8, 2003

The International Symposium on Optical Science and Technology SPIE's 48th Annual Meeting

Summary

- Techniques for color separation
- Layered image sensor
 - Architecture
 - Operation
 - Image characteristics
- Real-time camera design
- Sample images
- Paths for development

Three-channel color separation

Where to put the diodes

Spectral Characteristics

Includes effect of 400-660 nm pass filter

Color channel comparison

The first commercial sensor

- 2268 x 1512 active pixel locations
- 3 photodiodes per pixel location
- ~54% fill factor
- 9.12 x 9.12 µm pitch
- Black matrix mask
- 0.18 µm, 3.3 V CMOS
- 400 660 nm window
- 100-pin CLCC package

Special Features

- Extensive scan control
 - Select any rectangular regoion of interest
 - Group H and V independently in 2ⁿ steps
 - Skip every n lines or columns
- Adjustable analog voltages
 - Output levels
 - Anti-blooming level
- Three exposure control modes
 - Synchronized external shutter still shot
 - Full-frame with no shutter
 - Rolling shutter down to one line interval

Performance

- 49% QE at 625 nm
- 61 db dynamic range
- Dark current ~1na/cm² at 25C
- PRNU < ±1%
- 80 mW maximum power
- 24 MHz clock 4 fps for full sensor
- 7.14 µV/electron sensitivity
- Noise = 70 electrons rms (mostly kTC)

Scan Rate Ranges

- Clock rate 0 to 24 MHz
- Line period 49 µs + 41.6 ns/pixel
 - Pixel grouping reduces line count
- Typical scan rates
 - 2268 x 1512 4 Hz
 - 1024 x 1024 10 Hz
 - 640 x 480 27 Hz
- Scan configuration change < 50 μs

Real-time processing steps

- Linearization
 - Reverses roughly logarithmic response
 - 3 4k static lookup tables
 - Not temperature or time varying
- Dark field subtraction
 - Reduces fixed pattern noise and offsets
 - Data changes with exposure
- Color transformation
 - Converts sensor data to desired color space
 - Does not vary with time

Real-time camera

HanVision HVDUO-10M

Camera configuration

- CameraLink Base or parallel LVDS interface
 - 8 or 12 bit per color transfer modes
- Serial control of camera setup
 - ASCII text string command set
 - ASCII text file linearization & color tables
- Internal automatic dark frame shutter
- F-mount for optics (others available)
- Front, side and tripod mount holes
- 15 volt DC power

Camera Block Diagram

HVDUO Control & View

Sample images

- Foveon sample design
 - Aliasing
- HanVision HVDUO-10M
 - Color
- AVC Design Support Kit
 - Infrared and ultraviolet
- Sigma SD-9: Links
 - Pbase SD-9 galleries
 - http://www.pbase.com/sigmasd9
 - DPReview SD-9 sample images –

http://www.dpreview.com/gallery/sigmasd9_samples/

No color aliasing

This is a color image

Aliasing comparison

Filter Array

Same pixel spacing at object

ColorChecker chart

Blue response

Motherboard

Motherboard detail

Bottles

Bottles – detail

Alternative Vision

Self-portrait

Unfiltered spectral response

Naked diode at the surface

Depletion into the substrate

Ultraviolet imaging

- Daylight
- 300-400 nm
- 10% IR leakage
- Not a UV lens
- 3 channels summed

Infrared imaging - wideband

- Daylight
- 720+ nm
- Not an IR lens
- 3 channels summed

Future directions

- Next commerical device X3 5M
 - 1088 x 1440 pixels locations, 5 µm pitch
 - 9 fps full sensor, 43 fps 640 x 480
- More integration
 - A/D conversion
 - Stored configurations
 - Electronic shuttering & noise reduction
- Microlenses
- More readout channels?

